

 [image: PyPI] [https://pypi.org/project/OnClass/] [image: Docs] [https://onclass.readthedocs.io/en/latest/introduction.html]

OnClass: single-cell annotation based on the Cell Ontology

OnClass is a python package for single-cell cell type annotation. It uses the Cell Ontology to capture the cell type similarity. These similarities enable OnClass to annotate cell types that are never seen in the training data.

 [image: PyPI] [https://pypi.org/project/OnClass/] [image: Docs] [https://onclass.readthedocs.io/en/latest/introduction.html]

Introduction

OnClass is a python package for single-cell cell type annotation. It uses the Cell Ontology to capture the cell type similarity. These similarities enable OnClass to annotate cell types that are never seen in the training data.

A preprint of OnClass paper is on bioRxiv [https://www.biorxiv.org/content/10.1101/810234v1]
All datasets used in OnClass can be found in figshare [https://onclass.readthedocs.io/en/latest/introduction.html].
Currently, OnClass supports

	annotate cell type

	integrating different single-cell datasets based on the Cell Ontology

	marker genes identification

OnClass is a joint work by Altman lab [https://helix.stanford.edu/] at stanford and czbiohub [https://www.czbiohub.org/].

For questions about the software, please contact Sheng Wang [https://homes.cs.washington.edu/~swang/] at swang91@uw.edu.

Our web server can be found at: https://onclass.readthedocs.io/.

Install OnClass

OnClass can be substantially accelerated by using GPU (tensorflow 2.0). However, this is only required when you want to train your own model. OnClass can also be used with only CPU.

OnClass package only has three scripts: the OnClass class file [https://github.com/wangshenguiuc/OnClass/blob/master/OnClass/OnClassModel.py],
the deep learning model file [https://github.com/wangshenguiuc/OnClass/blob/master/OnClass/BilinearNN.py], and
the utility functions file [https://github.com/wangshenguiuc/OnClass/blob/master/OnClass/OnClass_utils.py].

You can simply get these three files and put it in the right directory (see how to use run_OnClass_example.py [https://github.com/wangshenguiuc/OnClass/blob/master/run_OnClass_example.py] in Tutorial). You can also install OnClass using pip as following:

	Only use CPU

pip install OnClass==1.2
pip install tensorflow==2.0

	Use GPU

pip install OnClass==1.2
pip install tensorflow-gpu==2.0

Development Version

The lastest verion of OnClass is on GitHub [https://github.com/wangshenguiuc/OnClass/]

git clone https://github.com/wangshenguiuc/OnClass.git

Dataset and pretrained models

If you want to use your own training data, please use OnClass_data_public_minimal.tar.gz [https://figshare.com/articles/dataset/OnClass_data_minimal/14776281]. OnClass_data_public_minimal.tar.gz includes the minimal files (ontology files) needed to run OnClass on your own dataset. You need to provide the annotated cells (training data) and then OnClass can classify unannotated cells.

If you don’t have your own training data, you can use the annotated gene expression data (e.g., Tabula Muris Senis, Lemur, HLCA, Allen brian) used in OnClass paper or pretrained models [https://figshare.com/articles/dataset/OnClass_data_public_Pretrained_model/14776326]. See scRNA_data below for how to download the annotated gene expression data. See Pretrained_model below for how to download the pretrained model.

1) scRNA_data

Download three parts from link 1 [https://figshare.com/articles/dataset/OnClass_data_public_scRNA_data_tar_gz_0/14776368], link 2 [https://figshare.com/articles/dataset/OnClass_data_public_scRNA_data_tar_gz_1/14776380], link 3 [https://figshare.com/articles/dataset/OnClass_data_public_scRNA_data_tar_gz_2/14776383]. Jointly extract the files using

cat OnClass_data_public_scRNA_data.tar.gz.* | tar -xz

This will give you all the single cell gene expression data used in our paper (see Fig. 2, Extended Data Figs. 1-3, Supplementary Figs. 4-7).

2) Ontology_data

These files are in OnClass_data_public_minimal.tar.gz [https://figshare.com/articles/dataset/OnClass_data_minimal/14776281]. They include Cell Ontology and Allen brain Ontology. Cell Ontology has cell type text definition. cl.ontology.nlp.emb is the text embedding of the definition of each cell type.

3) Pretrained_model

Download 8 tensorflow pretrained models [https://figshare.com/articles/dataset/OnClass_data_public_Pretrained_model/14776326] here. They are trained from 8 dataset in Fig. 2, Extended Data Figs. 1-3, Supplementary Figs. 4-7.

4) Intermediate_files

This folder contains the intermediate files. Data generated by example scripts will be stored here.

We suggest you organize all the downloaded files as the following:

[image: _images/figshare.PNG]
For questions about the datasets, please contact Sheng Wang at swang91@uw.edu.

How to run OnClass

To run OnClass, please first install OnClass, download datasets and then change file paths in config.py [https://github.com/wangshenguiuc/OnClass/blob/master/run_OnClass_example.py]

We provide a run_OnClass_example.py [https://github.com/wangshenguiuc/OnClass/blob/master/run_OnClass_example.py] and Jupyter notebook as an example to run OnClass. This script trains an OnClass model on all cells from one Lemur dataset, saves that model to a model file, then use this model to classify cells from another Lemur dataset.

Run your own dataset for cell type annotation

You only need to modify line 9-13 in run_OnClass_example.py [https://github.com/wangshenguiuc/OnClass/blob/master/run_OnClass_example.py] by replacing train_file, test_file with your training and test file, and train_label and test_label with the cell ontology label key in your dataset.

Import OnClass and other libs as:

from anndata import read_h5ad
from scipy import stats, sparse
import numpy as np
import sys
from collections import Counter
from OnClass.OnClassModel import OnClassModel
from utils import read_ontology_file, read_data, run_scanorama_multiply_datasets
from config import ontology_data_dir, scrna_data_dir, model_dir, Run_scanorama_batch_correction, NHIDDEN, MAX_ITER

Read training and test data. Set nlp_mapping = True to use the Char-level LSTM that maps uncontrolled vocabulary to controlled vocabulary. If you don’t want to use h5ad file, you can provide training and test data in the format of numpy array to OnClass. Training and test features (gene expression) should be cell by gene 2D array. Training label should be a vector of cell labels.

train_file = scrna_data_dir + '/Lemur/microcebusBernard.h5ad'
test_file = scrna_data_dir + '/Lemur/microcebusAntoine.h5ad'

train_label = 'cell_ontology_id'
test_label = 'cell_ontology_id'
model_path = model_dir + 'example_file_model'

cell_type_nlp_emb_file, cell_type_network_file, cl_obo_file = read_ontology_file('cell ontology', ontology_data_dir)
OnClass_train_obj = OnClassModel(cell_type_nlp_emb_file = cell_type_nlp_emb_file, cell_type_network_file = cell_type_network_file)

train_feature, train_genes, train_label, _, _ = read_data(train_file, cell_ontology_ids = OnClass_train_obj.cell_ontology_ids,
 exclude_non_leaf_ontology = False, tissue_key = 'tissue', AnnData_label_key = train_label, filter_key = {},
 nlp_mapping = False, cl_obo_file = cl_obo_file, cell_ontology_file = cell_type_network_file, co2emb = OnClass_train_obj.co2vec_nlp)

Embed the cell ontology:

OnClass_train_obj.EmbedCellTypes(train_label)

Batch correction using Scanorama:

if Run_scanorama_batch_correction:
 train_feature, test_feature = run_scanorama_multiply_datasets([train_feature, test_feature], [train_genes, test_genes], scan_dim = 10)[1]

Training:

cor_train_feature, cor_test_feature, cor_train_genes, cor_test_genes = OnClass_train_obj.ProcessTrainFeature(train_feature, train_label, train_genes, test_feature = test_feature, test_genes = test_genes)
OnClass_train_obj.BuildModel(ngene = len(cor_train_genes), nhidden = NHIDDEN)
OnClass_train_obj.Train(cor_train_feature, train_label, save_model = model_path, max_iter = MAX_ITER)

Test:

OnClass_test_obj = OnClassModel(cell_type_nlp_emb_file = cell_type_nlp_emb_file, cell_type_network_file = cell_type_network_file)
cor_test_feature = OnClass_train_obj.ProcessTestFeature(cor_test_feature, cor_test_genes, use_pretrain = model_path, log_transform = False)
OnClass_test_obj.BuildModel(ngene = None, use_pretrain = model_path)

pred_Y_seen, pred_Y_all, pred_label = OnClass_test_obj.Predict(cor_test_feature, test_genes = cor_test_genes, use_normalize=True)
pred_label_str = [OnClass_test_obj.i2co[l] for l in pred_label]

One dataset cross-validation

run_one_dataset_cross_validation.py [https://github.com/wangshenguiuc/OnClass/blob/master/script/run_one_dataset_cross_validation.py] can be used to reproduce Figure 2 in our paper. All data are provided in figshare (please see Dataset and pretrained model)

Cross dataset prediction

run_cross_dataset_prediction.py [https://github.com/wangshenguiuc/OnClass/blob/master/script/run_cross_dataset_prediction.py] can be used to reproduce Figure 4 in our paper. All data are provided in figshare (please see Dataset and pretrained model)

Marker genes identification

Please first run run_generate_pretrained_model.py [https://github.com/wangshenguiuc/OnClass/blob/master/script/run_generate_pretrained_model.py] to generate the intermediate files (line 53-54) for marker gene prediction.

Train a model using the seen cell types:

OnClass_train_obj.EmbedCellTypes(train_label)
print ('generate pretrain model. Save the model to $model_path...')
model_path = model_dir + 'OnClass_full_'+dname
train_feature, train_genes = OnClass_train_obj.ProcessTrainFeature(train_feature, train_label, train_genes)
OnClass_train_obj.BuildModel(ngene = len(train_genes))
OnClass_train_obj.Train(train_feature, train_label, save_model = model_path)

Use this model to classify cells into all cell types in the Cell Ontology. Here pred_Y_seen is a cell by seen cell type matrix, pred_Y_all is a cell by all cell type type matrix.

OnClass_test_obj = OnClassModel(cell_type_nlp_emb_file = cell_type_nlp_emb_file, cell_type_network_file = cell_type_network_file)
OnClass_test_obj.BuildModel(ngene = None, use_pretrain = model_path)
pred_Y_seen, pred_Y_all, pred_label = OnClass_test_obj.Predict(train_feature, test_genes = train_genes, use_normalize=False, use_unseen_distance = -1)
np.save(output_dir+dname + 'pred_Y_seen.released.npy',pred_Y_seen)
np.save(output_dir+dname + 'pred_Y_all.released.npy',pred_Y_all)

Then run run_marker_genes_identification.py [https://github.com/wangshenguiuc/OnClass/blob/master/script/run_marker_genes_identification.py] for marker gene identification (Figure 5c).

Run run_marker_gene_based_prediction.py [https://github.com/wangshenguiuc/OnClass/blob/master/script/run_marker_gene_based_prediction.py] for marker gene based prediction (Figure 5d,e,f, Extended Data Figure 7).

References

	Hie19

	Brian Hie, Bryan Bryson, and Bonnie Berger. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama., Nature biotechnology 37.6 (2019): 685.

	Wang19

	Sheng Wang, Angela Oliveira Pisco, Jim Karkanias, and Russ B. Altman. Unifying single-cell annotations based on the Cell Ontology., bioRxiv [https://www.biorxiv.org/content/10.1101/810234v1]

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 trianglelib	

 	
 	
 trianglelib.shape	

Index

 T

T

 	
 	trianglelib.shape (module)

OnClass API reference

The “shape” module

The “utils” module

 [image: PyPI] [https://pypi.org/project/OnClass/] [image: Docs] [https://onclass.readthedocs.io/en/latest/introduction.html]

How to use OnClass.

They key idea of OnClass is using the Cell ontology to help cell type prediction. OnClass is the first tool that can classify cells into a new cell type that doesn’t exist in the training data. To achieve this, the key components are:

1) Embedding Cell ontology

OnClass can use any form of cell type similarity, including hierarchical structure, directed acyclic graph, weighted network, unweighted network or a just a few lines of cell type similarity. An example can be found here [https://github.com/wangshenguiuc/OnClass/tree/master/img/cell_type_similarity_example.txt] .

In our paper, we use the hierarchical ontology structure from the Cell Ontology [http://www.obofoundry.org/ontology/cl.html]. However, OnClass is very flexible and any forms of prior cell type similarity (i.e., label similarity) can be used. It could be a weighted network, where nodes are cell types and edge weights are cell type similarity (preferred to be normalized between 0 and 1, but not required). It could be a unweighted network where all edge weights are set to 0, which is the case for the Cell Ontology. It could be just a few lines of cell type similarity, where each line is a tab-spitted three Column file in the form of “CL:000001tCL:000002t0.8”, representing cell type 1, cell type 2, and similarity. By default, all edges are undirected since they are similarity. But if you have directed similarities, please email us and we are happy to modify the code to support it.

We provide a precomputed cell ontology embeddings based on the Cell Ontology [http://www.obofoundry.org/ontology/cl.html]. Please check the API section Embedding Cell Ontology for how to read and embed the Cell Ontology.

2) Read the gene expression data

The gene expression data is used as training data. It includes a cell by gene matrix and a label for each cell.

The label for each cell should be a cell ontology ID or cell ontology terms. If you training labels are not mapped to cell ontology ID, please use our natural language processing tool to map them to existing cell ontology terms. Our tool use a char-level LSTM siamese network and achieve 93.7% accuracy in mapping synonym of cell ontology terms and can deal with composition, misspelling, and abbreviations. For more information about this natural language processing tool, please see section Char-level LSTM for cell type term mapping.

OnClass is a highly flexible tool that can support a variety formats of gene expression data inputs, including scipy sparse matrix, numpy 2D array, tsv format of matrix, tsv format of “gene_nametcell_nametcount”, scanpy AnnData, and sparse matrix format used by 10X Genomics. Some of these input implementation are adopted from Scanorama project.

3) Predict cell types for new cells

OnClass can predict cell types through any of the following four approaches:

	Use the pretrained marker genes. OnClass found 20 marker genes for each cell type in the Cell Ontology. Marker genes are precomputed based on all FACS cells from Tabula Muris Senis.

	Use the predicted score of any existing models and propagate to all cell types in the Cell Ontology.

	Use the pretrained Blinear Neural Network model. This model is trained on all FACS cells from Tabula Muris Senis and all cell type terms from the Cell Ontology.

	Train from new data. Train a new model on a new gene expression data and predicted on the cell types for a set of new cells.

The time and memory complexity of a) and b) are very small (e.g., less than 1 minute on any personal laptop). The time and memory complexity of c) is moderate (less than 1 mintues for 50K cells on GPU and less than 10 minutes for 50K on CPU.) The time and memory complexity of d) is large (about 1 hour for 50k cells on GPU and 4 hour for 50k cells on CPU). However, the expected performance is: d) > c) > b) > a). So please choose one of them according to your application.

Flowchart

Here is the flowchart of OnClass

[image: _images/flowchart.png]
OnClass is a joint work by Altman lab [https://helix.stanford.edu/] at stanford and czbiohub [https://www.czbiohub.org/].

For questions about the software, please contact Sheng Wang [http://web.stanford.edu/~swang91/] at swang91@stanford.edu.

How to use OnClass

The key idea of OnClass is using the Cell ontology to help cell type prediction. OnClass is the first tool that can classify cells into a new cell type that doesn’t exist in the training data. To achieve this, it has three steps:

1) Embedding Cell ontology

The first step of OnClass is to embed cell types into the low-dimensional space based on the Cell Ontology.

OnClass can take different formats of cell type similarities, including hierarchical structure, directed acyclic graph, weighted network, unweighted network or just a few lines of cell type similarity. An example can be found here [https://github.com/wangshenguiuc/OnClass/blob/master/docs/img/cell_type_similarity_example.txt] .

In our paper, we use the hierarchical ontology structure from the Cell Ontology [http://www.obofoundry.org/ontology/cl.html]. However, OnClass is very flexible and can take any forms of prior cell type similarity (i.e., label similarity) can be used. It could be a weighted network, where nodes are cell types and edge weights are cell type similarity (edge weights are not required to be normalized between 0 and 1). It could be an unweighted network where all edge weights are set to 1, which is used in our analysis. It could be just a few lines of cell type similarity, where each line is a tab-spitted three Column file in the form of “CL:000001 CL:000002 0.8”, representing cell type 1, cell type 2, and their similarity. By default, all edges are undirected since they are similarity. But if you have directed similarities, please email us and we are happy to modify the code to support it.

We provide a precomputed cell ontology embeddings based on the Cell Ontology [http://www.obofoundry.org/ontology/cl.html] in figshare. Please check the Tutorial section Embedding Cell Ontology for how to read and embed the Cell Ontology.

2) Read the gene expression data

The second step of OnClass is to read the gene expression data with training labels.

The gene expression data is used as training data. It includes a cell by gene matrix and a label for each cell.

The label for each cell should be a cell ontology ID or cell ontology terms. If your training labels are not mapped to cell ontology ID, please use our natural language processing tool to map them to existing cell ontology terms. Our tool use a char-level LSTM siamese network (see Tutorial) and achieve 93.7% accuracy in mapping synonym of cell ontology terms and can deal with composition, misspelling, and abbreviations. For more information about this natural language processing tool, please see section Char-level LSTM for cell type term mapping.

OnClass is a highly flexible tool that can support various formats of gene expression data inputs, including scipy sparse matrix, numpy 2D array, tsv format of matrix, tsv format of “gene_name cell_name count”, scanpy AnnData, and sparse matrix format used by 10X Genomics. Some of these input implementations are adopted from the Scanorama project.

3) Predict cell types for new cells

The last step of OnClass is to predict cell types according to cell type embeddings and gene expression.

OnClass can predict cell types through any of the following four approaches:

	Use the pretrained marker genes. OnClass found 20 marker genes for each cell type in the Cell Ontology. Marker genes are precomputed based on all FACS cells from Tabula Muris Senis.

	Use the predicted score of any existing models and propagate to all cell types in the Cell Ontology.

	Use the pretrained Bilinear Neural Network model. This model is trained on all FACS cells from Tabula Muris Senis and all cell type terms from the Cell Ontology.

	Train from new data. Train a new model on a new gene expression data and predicted on the cell types for a set of new cells.

The time and memory complexity of a) and b) are very small (e.g., less than 1 minute on any personal laptop). The time and memory complexity of c) is moderate (less than 1 minute for 50K cells on GPU and less than 10 minutes for 50K on CPU.) The time and memory complexity of d) is large (about 1 hour for 50k cells on GPU and 4 hour for 50k cells on CPU). However, the expected performance is: d) > c) > b) > a). So please choose one of them according to your application.

Flowchart

Here is the flowchart of OnClass, describing these three steps:

[image: _images/flowchart.png]

Quick start

Here, we provide an introduction of how to use OnClass

Cell type annotation (cross validation on the TMS)

A example script CellTypeAnnotation_TMS.py [https://github.com/wangshenguiuc/OnClass/blob/master/scripts/CellTypeAnnotation/CellTypeAnnotation_TMS.py] for cell type annotation is at our GitHub [https://github.com/wangshenguiuc/OnClass/blob/master/scripts/CellTypeAnnotation/CellTypeAnnotation_TMS.py]

Import OnClass as::

from OnClass.utils import *
from OnClass.OnClassPred import OnClassPred

Read the single cell data as. Please change the DATA_DIR to where you store the downloaded data. Here we use TMS FACS cells as an example.:

DATA_DIR = '../../OnClass_data/'
data_file = DATA_DIR + 'raw_data/tabula-muris-senis-facs'
X, Y = read_data(filename=data_file)
train_X, train_Y_str, test_X, test_Y_str = SplitTrainTest(X, Y)

where X is a sample by gene gene expression matrix, Y is a label vector for each sample. The labels in Y should use the Cell Ontology Id (e.g., CL:1000398). The data (e.g., tabula muris raw gene expression matrix, the Cell Ontology obo file) can be downloaded from FigShare.(see dataset section in this tutorial).

Embedd the cell ontology.::

unseen_l, l2i, i2l, onto_net, Y_emb, cls2cls = ParseCLOnto(train_Y_str, DATA_DIR = DATA_DIR)
train_Y = MapLabel2CL(train_Y_str, l2i)
test_Y = MapLabel2CL(test_Y_str, l2i)
unseen_l = MapLabel2CL(unseen_l, l2i)

Y_emb is a label by dimension matrix of the embeddings of all terms in the Cell Ontology (both seen and unseen), MapLabel2CL convert Cell Ontology Id to integer labels. unseen_l is a list of all the unseen cell types (i.e., cell types not in training data, but in test data)

Train the model:

OnClass_obj = OnClassPred()
OnClass_obj.train(train_X, train_Y, Y_emb)

Predict the label for test data:

test_Y_pred = OnClass_obj.predict(test_X)

test_Y_pred is a sample (number of test cells) by label (number of total cell types in the Cell Ontology) score matrix. A larger score means higher confidence.

Cell type annotation (Train on TMS, Test on 26-datasets)

A example script Annot26datasets.py [https://github.com/wangshenguiuc/OnClass/blob/master/scripts/CellTypeAnnotation/Annot26datasets.py] for transferring cell type annotation is at our GitHub [https://github.com/wangshenguiuc/OnClass/blob/master/scripts/CellTypeAnnotation/CellTypeAnnotation_TMS.py]

We use Scanorama to remove batch effects across datasets. Please install Scanorama [https://github.com/brianhie/scanorama] before running this script. Import OnClass as:

from scanorama import *
from OnClass.utils import *
from OnClass.OnClassPred import OnClassPred
from OnClass.other_datasets_utils import my_assemble, data_names_all, load_names

Read TMS and 26-datasets. Here we train on TMS and then predict the labels for each cell in 26-datasets.:

DATA_DIR = '../OnClass_data/'
data_file = DATA_DIR + '/raw_data/tabula-muris-senis-facs'
train_X, train_Y_str, genes_list = read_data(filename=data_file, DATA_DIR = DATA_DIR, return_genes=True)
tms_genes_list = [x.upper() for x in list(genes_list.values())[0]]
datasets, genes_list, n_cells = load_names(data_names_all,verbose=False,log1p=True, DATA_DIR=DATA_DIR)
datasets.append(train_X)
genes_list.append(tms_genes_list)
data_names_all.append('TMS')

Eembedd the cell ontology.:

unseen_l, l2i, i2l, onto_net, Y_emb, cls2cls = ParseCLOnto(train_Y_str, DATA_DIR=DATA_DIR)
train_Y = MapLabel2CL(train_Y_str, l2i)

Use Scanorama to correct batch effects.

datasets, genes = merge_datasets(datasets, genes_list)
datasets_dimred, genes = process_data(datasets, genes, dimred=100)
expr_datasets = my_assemble(datasets_dimred, ds_names=data_names_all, expr_datasets = datasets, sigma=150)[1]
expr_corrected = sparse.vstack(expr_datasets)
expr_corrected = np.log2(expr_corrected.toarray()+1)

Annotate 26-datasets, train on TMS.

ntrain,ngene = np.shape(train_X)
nsample = np.shape(expr_corrected)[0]
train_X_corrected= expr_corrected[nsample-ntrain:,:]
test_X_corrected = expr_corrected[:nsample-ntrain,:]
OnClass_obj = OnClassPred()
OnClass_obj.train(train_X_corrected, train_Y, Y_emb, log_transform=False)
test_Y_pred = OnClass_obj.predict(test_X_corrected, log_transform=False)

Save the prediction matrix, nsample (number of samples in 26-datasets) by nlabels.

np.save(output_dir + '26_datasets_predicted_score_matrix.npy', test_Y_pred)

After obtaining the scoring matrix, we can run Evaluate26datasets.py.py <https://github.com/wangshenguiuc/OnClass/blob/master/scripts/CellTypeAnnotation/Evaluate26datasets.py.py> to calculate AUROC.

Data Integration (integrate 26-datasets using OnClass)

A example script DataIntegration.py [https://github.com/wangshenguiuc/OnClass/blob/master/scripts/DataIntegration/DataIntegration.py] for transferring cell type annotation is at our GitHub [https://github.com/wangshenguiuc/OnClass/blob/master/scripts/DataIntegration/DataIntegration.py]

Load the pre-computed scoring matrix (see the above section for detail).:

test_Y_pred = np.load(OUTPUT_DIR + '26_datasets_predicted_score_matrix.npy')
datasets, genes_list, n_cells = load_names(data_names_all,verbose=False,log1p=True, DATA_DIR=DATA_DIR)
datasets, genes = merge_datasets(datasets, genes_list)

Integration based on our method.:

pca = PCA(n_components=50)
test_Y_pred_red = pca.fit_transform(test_Y_pred[:, :nseen])

References

	Hie19

	Hie, Brian, Bryan Bryson, and Bonnie Berger. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama., Nature biotechnology 37.6 (2019): 685.

	Wang19

	Wang, Sheng,Angela Oliveira Pisco, Jim Karkanias, and Russ B. Altman. Unifying single-cell annotations based on the Cell Ontology., bioRxiv [https://www.biorxiv.org/content/10.1101/810234v1]

 [image: PyPI] [https://pypi.org/project/OnClass/] [image: Docs] [https://onclass.readthedocs.io/en/latest/introduction.html]

PyTorch Version of OnClass

We also wrote a version of OnClass in PyTorch. This version implements a memory saving mode toggle that allows the program to run with as low as 8GB of RAM. Using this model is almost identical to the TensorFlow version, but there are a couple differences that I will illustrate below.

Cell type annotation

An example script run_OnClass_example.py [https://github.com/wangshenguiuc/OnClass/OnClass_Torch/run_OnClass_example.py] for cell type annotation is at our GitHub [https://github.com/wangshenguiuc/OnClass/OnClass_Torch/run_OnClass_example.py]. I will walk through the code in this tutorial.

First import PyTorch version of OnClass as:

from OnClass_Torch.utils import *
from OnClass_Torch.OnClass.OnClassModel_Torch import OnClassModel

This tutorial also uses the following settings:

from utils import read_ontology_file, read_data
from config import ontology_data_dir, scrna_data_dir, model_dir, NHIDDEN, MAX_ITER, MEMORY_SAVING_MODE

train_file = scrna_data_dir + '/Lemur/microcebusBernard.h5ad'
test_file = scrna_data_dir + '/Lemur/microcebusAntoine.h5ad'

train_label = 'cell_ontology_id'
test_label = 'cell_ontology_id'
model_path = model_dir + 'example_file_model'

If you are interested in annotating your own datasets, you can do so by replacing train_file and test_file with paths to your own files.

Next we read the cell ontology data and initialize the model as:

print ('read ontology data and initialize training model...')
cell_type_nlp_emb_file, cell_type_network_file, cl_obo_file = read_ontology_file('cell ontology', ontology_data_dir)
OnClass_train_obj = OnClassModel(cell_type_nlp_emb_file = cell_type_nlp_emb_file, cell_type_network_file = cell_type_network_file, memory_saving_mode=MEMORY_SAVING_MODE)

where MEMORY_SAVING_MODE is true if you want to run OnClass on low RAM, and false otherwise. This value can be set easily in the config [https://github.com/wangshenguiuc/OnClass/OnClass_Torch/config.py] file.

Read the training data from the training file as:

print ('read training single cell data...')
train_feature, train_genes, train_label, _, _ = read_data(train_file, cell_ontology_ids = OnClass_train_obj.cell_ontology_ids,
 exclude_non_leaf_ontology = False, tissue_key = 'tissue', AnnData_label_key = train_label, filter_key = {},
 nlp_mapping = False, cl_obo_file = cl_obo_file, cell_ontology_file = cell_type_network_file, co2emb = OnClass_train_obj.co2vec_nlp,
 memory_saving_mode=MEMORY_SAVING_MODE)

where train_feature is a sample-by-gene gene expression matrix, train_label is a label vector for each sample. The labels in train_label in this example are Cell Ontology Ids (e.g., CL:1000398). It’s important to add, that if the model is in memory saving mode, it will load train_feature as a sparse scipy matrix.

Next, we embed the cell onotology as:

print ('embed cell types using the cell ontology...')
OnClass_train_obj.EmbedCellTypes(train_label)

And read the test data as:

test_label = x.obs[test_label].tolist()
test_genes = np.array([x.upper() for x in x.var.index])
if MEMORY_SAVING_MODE:
 x = read_h5ad(test_file, backed='r')
 test_feature = x.X.to_memory()
else:
 x = read_h5ad(test_file)
 test_feature = x.X.toarray()

Often the datasets are too large to read their dense representations into memory. To accomodate this, the low-memory mode loads a sparse representation of the dataset into memory. Namely, a scipy.sparse.csr_matrix.

Process the training features and start training the model as:

print ('generate pretrain model. Save the model to $model_path...')
cor_train_feature, cor_test_feature, cor_train_genes, cor_test_genes = OnClass_train_obj.ProcessTrainFeature(
 train_feature, train_label, train_genes, test_feature = test_feature, test_genes = test_genes,
 batch_correct=False)
OnClass_train_obj.BuildModel(ngene = len(cor_train_genes), nhidden = NHIDDEN)
OnClass_train_obj.Train(cor_train_feature, train_label, save_model = model_path, max_iter = MAX_ITER)

If model_path is not none, the model will be saved to that file path. You can load the pretrained model from there as:

print ('initialize test model. Load the model from $model_path...')
OnClass_test_obj = OnClassModel(cell_type_nlp_emb_file = cell_type_nlp_emb_file, cell_type_network_file = cell_type_network_file, memory_saving_mode=MEMORY_SAVING_MODE)
cor_test_feature, mapping = OnClass_train_obj.ProcessTestFeature(
 cor_test_feature, cor_test_genes, use_pretrain = model_path, log_transform = False)
OnClass_test_obj.BuildModel(ngene = None, use_pretrain = model_path)

Predict cell-type annotations from the test dataset as:

pred_Y_seen, pred_Y_all, pred_label = OnClass_test_obj.Predict(
cor_test_feature, test_genes = cor_test_genes, use_normalize=False)
pred_label_str = [OnClass_test_obj.i2co[l] for l in pred_label]

pred_label_str[i] will contain the predicted cell-type of the `i`th sample in the test dataset.

 _static/up.png

_static/ajax-loader.gif

_images/flowchart.png
Cell Ontology

Low dimensional space of

cell types
<
5 Embed the Cell Ontology O o ©
q) A
> o
3 i
O
(14 N O 0
IS-a
O
relation ‘ ‘ ‘ -
2 -
2 . v
H?_, Step 2
& ‘ ‘ . Divide low-dimen-
sional space
Single cells |
o O
oc0°
@° %) Step 3
2 ° O Project single cells
o
o
OO
o ©0°
O o 60
} 00 e
Unannotated cells <&

Annotated cells

Cell type annotation

A
“““““

L.
“““““
)

\\\\\\

N Unseen cell type

Data integration

.-
.
-
.
-
.
.-

Marker genes identifcation

-t
.
-
.

1) CD4*
2) CD25"

-
-
-
-
.-

.-
.-

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 OnClass: single-cell annotation based on the Cell Ontology

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

